商务服务
爬取微博热搜榜
2024-10-31 10:53

一、主题式网络爬虫设计方案
1.主题式网络爬虫名称:爬取微博热搜榜
2.主题式网络爬虫爬取的内容:微博热搜前十
3.主题式网络爬虫设计方案概述:确定爬取网页,将爬取数据保存到csv文件中,并对数据进行清理处理,将数据进行可视化并建立回归方程。知识掌握不充分,对网页爬取还有很多不懂。

爬取微博热搜榜

二、主题页面的结构特征分析
1.主题页面的结构与特征分析


2.Htmls页面解析

三、网络爬虫程序设计

1.数据爬取与采集

import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import reurl = 'https://tophub.today/n/KqndgxeLl9'
headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36'}
response = requests.get(url,headers=headers)
html = response.content.decode('utf-8')
html = response.text
titles = re.findall('<a href=https://www.cnblogs.com/redbigbaby/p/.*? target="_blank" .*?>(.*?)</a>',html)[3:13]
hot = re.findall('<td>(.*?)</td>',html)[0:10]
a = []#创建空列表
for i in range(10):
    a.append([i+1,titles[i],hot[i][:-1]])
#完成创建
file = pd.Dataframe(a,columns = ['排名','标题','热度(单位:万)'])
print(file)
file.to_csv('微博热搜.csv')#保存文件


2.对数据进行清洗和处理

s = pd.Dataframe(pd.read_csv('微博热搜.csv'))
s.head()
s.drop('热度(单位:万)',axis = 1,inplace=True)#删除无效列
s.head()
s.duplicated()#查找重复值
s.isna().head()#统计缺失值NaN
s.describe()#使用describe查看统计信息

4.数据分析与可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['Arial Unicode Ms']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False#用来正确显示负号
data=np.array([431.3,135.5,128.0,114.0,112.8,97.0,95.5,93.1,89.9,89.3])
index=['1','2','3','4','5','6','7','8','9','10']
s = pd.Series(data,index)
s.name='微博热搜条形图'
s.plot(kind='bar',title='微博热搜条形图')
plt.show()

5.根据数据之间的关系,分析两个变量之间的相关系数,画出散点图,并建立变量之间的回归方程(一元或多元)

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib
from scipy.optimize import leastsq
filename = '微博热搜.csv'
colnames=["排名","热度(单位:万)","标题"]
df = pd.read_csv(filename,skiprows=1,names=colnames)
X=df.排名
Y=df.标题
def fit_func(p,x):
    a,b,c=p
    return a*x*x+b*x+c
def error_func(p,x,y):
    return fit_func(p,x)-y
p0=[2,4,6]
para=leastsq(error_func,p0,args=(X,Y))
a,b,c=para[0]
plt.figure(figsize=(8,4))
plt.scatter(X,Y,color="pink",label=u"热搜数据",linewidth=2)
x=np.linspace(0,25,20)
y=a*x*x+b*x+c
plt.plot(x,y,color="blue",label=u"拟合直线",linewidth=2)
plt.title("微博热搜回归方程")
plt.legend()
plt.show()

7.将以上各部分的代码汇总,附上完整程序代码

import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import re
url = 'https://tophub.today/n/KqndgxeLl9'
headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36'}
response = requests.get(url,headers=headers)
html = response.content.decode('utf-8')
html = response.text
#print(html)
#解析网页与抓取信息
titles = re.findall('<a href=https://www.cnblogs.com/redbigbaby/p/.*? target="_blank" .*?>(.*?)</a>',html)[3:13]#正则表达
hot = re.findall('<td>(.*?)</td>',html)[0:10]
a = []#创建空列表
for i in range(10):
    a.append([i+1,titles[i],hot[i][:-1]])
#完成创建
file = pd.Dataframe(a,columns = ['排名','标题','热度(单位:万)'])
print(file)file.to_csv('微博热搜.csv')#保存文件
s = pd.Dataframe(pd.read_csv('微博热搜.csv'))
s.head()
s.drop('热度(单位:万)',axis = 1,inplace=True)#删除无效列
s.head()
s.duplicated()#查找重复值
s.isna().head()#统计缺失值NaN
s.describe()#使用describe查看统计信息
#绘制条形图
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['Arial Unicode Ms']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False#用来正确显示负号
data=np.array([431.3,135.5,128.0,114.0,112.8,97.0,95.5,93.1,89.9,89.3])
index=['1','2','3','4','5','6','7','8','9','10']
s = pd.Series(data,index)
s.name='微博热搜条形图'
s.plot(kind='bar',title='微博热搜条形图')
plt.show()
#绘制拟合曲线
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib
from scipy.optimize import leastsq
filename = '微博热搜.csv'
colnames=["排名","热度(单位:万)","标题"]
df = pd.read_csv(filename,skiprows=1,names=colnames)
X=df.排名
Y=df.标题
def fit_func(p,x):
    a,b,c=p
    return a*x*x+b*x+c
def error_func(p,x,y):
    return fit_func(p,x)-y
p0=[2,4,6]
para=leastsq(error_func,p0,args=(X,Y))
a,b,c=para[0]
plt.figure(figsize=(8,4))
plt.scatter(X,Y,color="pink",label=u"热搜数据",linewidth=2)
x=np.linspace(0,25,20)
y=a*x*x+b*x+c
plt.plot(x,y,color="blue",label=u"拟合直线",linewidth=2)
plt.title("微博热搜回归方程")
plt.legend()
plt.show()

四、结论

1.经过对主题数据的分析与可视化,可以得到哪些结论?

这有助于我们清晰的了解微博热搜的变化

    以上就是本篇文章【爬取微博热搜榜】的全部内容了,欢迎阅览 ! 文章地址:http://xiaoguoguo.dbeile.cn/news/14.html 
     资讯      企业新闻      行情      企业黄页      同类资讯      首页      网站地图      返回首页 多贝乐移动站 http://xiaoguoguo.dbeile.cn/mobile/ , 查看更多   
最新新闻
手机降低分辨率(手机降低分辨率能否提高性能)
  关于手机降低分辨率的问题探讨  随着智能手机的普及,我们越来越多地关注手机的各种性能,其中分辨率是一个重要的指标。然
手机流量 英语(手机流量英文怎么说)
  Mobile Data Traffic in English  随着科技的快速发展,智能手机已经成为了我们日常生活中不可或缺的一部分。与此同时,手
手机自动清理内存(手机自动清理内存垃圾)
  关于手机自动清理内存的重要性及其优势  随着智能手机的普及,我们的生活越来越离不开手机。然而,随着手机使用时间的增长
荣耀最强手机(荣耀顶级手机)
  荣耀最强手机:科技与艺术的完美结合  在当今这个高速发展的时代,智能手机已经成为了我们日常生活中不可或缺的一部分。而
一百万的手机(一百万的手机什么样)
  《一百万的手机》:奢华与科技的完美结合  随着科技的飞速发展,智能手机已经成为我们日常生活中不可或缺的一部分。然而,
华为最好的一款手机(华为最好的一款手机是什么型号)
  华为最好的一款手机  华为作为全球知名的科技公司,其手机产品一直备受关注。随着技术的不断进步和市场的竞争日益激烈,华
安卓手机铃声软件(安卓手机铃声软件哪个最好)
  安卓手机铃声软件:多样选择与个性化体验  随着科技的快速发展,智能手机已经成为我们日常生活中不可或缺的一部分。铃声作
怎么用手机发qq邮箱(怎么用手机发qq邮箱文件)
  如何使用手机发送QQ邮箱  在当今信息化的时代,手机已经成为我们日常生活中不可或缺的一部分。其中,QQ邮箱作为广泛使用的
手机qq删除好友(手机qq删除好友怎么找回来)
  关于《手机QQ删除好友》的文章  随着社交媒体的普及,QQ作为中国最受欢迎的社交软件之一,已经成为人们生活中不可或缺的一
手机监控定位(父母如何定位子女的手机)
  关于《手机监控定位》的文章  随着科技的快速发展,手机已经成为了我们日常生活中不可或缺的一部分。然而,随之而来的是一