前几天学到了一种针对大模型进行提示词编程的方法,效果比较炸裂,特别分享给大家。
因为有个小朋友正在学习加减法,所以本文的大部分例子都是用来生成加减法练习题。
这是GPT刚刚出现时,我学到的一种提示词编写方法,大家可能也都接触过了。就是让大模型扮演一个角色,定义好这个角色的能力,然后给它提出一些相关的问题,让它按照某种格式输出。
举个例子:
请你扮演一名数学老师,从事小学数学教育30年,精通设计各种数学考试题。请给我编写一些考试题,面向小学1年级同学,考试范围:10以内的加减法,共10道题,请直接列出问题,每行一个。
演示效果如下:
从这一节开始就是学到的提示词编程部分了。
我们说“程序=算法+数据结构”,提示词编程就是对抽取提示词中的算法和数据结构,按照特定的格式组织起来。
这里的组织方式就是Json数据格式。举个例子:
在这个例子中,我们通过“简介”来声明角色;通过“系统”来定义针对用户输入的处理规则,包括要求用户输入的信息以及返回格式,也可以看作是程序的算法部分;通过“打招呼”来做一个友好的提示。
这里我们还使用了 <动态内容> 进行占位,这个部分会被大模型自动理解并填充内容。
另外还对数学老师的能力做了一些泛化,AI数学老师可以针对不同的年级和考试范围进行出题,需要用户提供相关信息。演示效果如下:
在程序中我们通常要严格限制用户的输入参数,比如这里的年级、考试范围、题目形式、题目数量等。这里我们也可以在提示词编程中做进一步的限制。举个例子:
当输入不符合规则时的演示效果如下:
指令就像给用户提供不同的功能,这有点类似在API中提供各种接口。举个例子:
实际演示效果如下:
“出题”指令:
“阅卷”指令:注意GPT可能会给出错误的判断结果,大模型的数学能力普遍存在问题,即使是10以内的加减法。
我们确实可以将上边的AI能力封装为API,对外提供小学数学出题服务。
我们需要增加一个“返回格式”的定义,示例如下:
其中“返回格式”定义了返回数据必须为Json,还有Json中包括的数据项目和数据类型。
依靠大模型的理解能力,我们使用 <动态内容> 进行占位,大模型输出时会自动填充。
演示效果如下:
然后我们可以编写代码,封装一个接口,其内部调用OpenAI的API,传入这个提示词和用户的指令,再把OpenAI返回的Json内容转发给接口调用者,这就是一个完整的AI数学出题服务了。
因为这个提示词编程的方案来自其它人,所以代码部分推荐去看大佬的仓库了:
https://github.com/daijun4you/python-gpt-course/blob/main/course/prompt_programming/math_teacher.py
最后送给大家两个好玩的提示词。
AI占星师
Java面试出题机
实测GPT-4要比GPT-3.5的效果好很多,如果你用GPT-3.5,可以在Json前增加这段话:
我会给你一个Json格式的初始指令,后续问答你都必须严格按照这个指令处理,下面是我的指令:
如果你用百度文心一言,也有一定的效果,只是上下文控制的不太好,不建议。
基于这套方法,其实我们可以做的更好,比如记住用户的答题情况,下次出题时传递给AI,让AI提供更适合学生提升的题目,不要太难,也不要太简单,稍微跳一下就能达到。
本文地址:http://xiaoguoguo.dbeile.cn/quote/965.html 多贝乐 http://xiaoguoguo.dbeile.cn/ , 查看更多